This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713617200

Studies on the Synthesis of the C-Glycosidic Part of Nogalamycin, Part 2

Karsten Krohna ${ }^{\text {a }}$; Ulrich Flörke ${ }^{\text {a }}$; Jürgen Keine ${ }^{\text {aª }}$; Ina Terstiege ${ }^{\text {a }}$
${ }^{\text {a }}$ Fachbereich Chemie und Chemietechnik, Universität-GH Paderborn, Paderborn, Germany

To cite this Article Krohn, Karsten, Flörke, Ulrich, Keine, Jürgen and Terstiege, Ina(1998) 'Studies on the Synthesis of the C-Glycosidic Part of Nogalamycin, Part 2', Journal of Carbohydrate Chemistry, 17: 2, 171 - 195
To link to this Article: DOI: 10.1080/07328309808002321
URL: http://dx.doi.org/10.1080/07328309808002321

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


STUDIES ON THE SYNTHESIS OF THE C-GLYCOSIDIC PART OF

NOGALAMYCIN, PART 2

Karsten Krohn, * Ulrich Flörke, Jürgen Keine and Ina Terstiege
Fachbereich Chemie und Chemietechnik, Universität-GH Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany. E-mail: kk@chemie.uni-paderborn.de

Received March 11, 1997 - Final Form October 28, 1997

Abstract

The stereochemistry of the addition of metalloaryls $11 \mathbf{w}-\mathrm{z}$ to the methyl ketones 10a-e was studied in connection with the construction of the hogalamycin C-glycoside. Excellent selectivities towards the (S)-isomer 13a were observed in the β-chelate model \mathbf{B} in the reaction of the benzyl ethers 10a with the cerium reagent 11y and the titanium reagent 11 z or the alcohol 10 c with the lithium compound 11 w . A moderate $3: 1$ selectivity in favor of the desired (R)-isomer was observed in the reaction of the silyl ether 10 d with 11 w . A reversal of the addition sequence (reaction of 15 a with MeMgI) led exclusively to 13 a whereas the alcohol 15 c gave a $5: 3$ mixture of $\mathbf{1 2 c}$:13c.

INTRODUCTION

In studies aimed at the generation of the C-glycosidic bond of the nogalamycin family of antitumor antibiotics it was shown that the addition of ArLi to ketone 1 predominantly formed the wrong (S)-isomer (Scheme 1). ${ }^{1}$

2

Scheme 1

In the present paper we present extended work on the stereochemical outcome of the addition of a variety of metalated aryls $11 \mathbf{w}-11 z$ to the 4 -acetyl-1,3-dioxanes $10 a, c, d, e$ with inverted configuration of the oxygen function at $\mathrm{C}-5$ as compared to that in 1 . We investigated how the inversion at C-5 influenced the stereochemistry of the addition of the metalated dimethoxybenzene to the acetyl side chain of the 1,3-dioxane system.

RESULTS AND DISCUSSION

The metal in the metalaryl compounds 11 was systematically changed $[\mathrm{M}=\mathrm{Li}$ (11w), MgBr (11x), CeCl_{2} (11y), $\mathrm{Ti}(\mathrm{OiPr})_{3}$ (11z)] as well as the oxygen functionality at $\mathrm{C}-5$ of the substrates $\left[\mathrm{R}=\mathrm{Bzl}(\mathbf{1 0 a}), \mathrm{H}(\mathbf{1 0 c}), \mathrm{SiMe}_{3},(\mathbf{1 0 d})\right.$ and $\left.\mathrm{Si}-t-\mathrm{BuMe}_{2}(\mathbf{1 0 e})\right]$ to cover the entire range of possible transition states from chelate controlled to the non-chelated ones.

The stereochemistry at C-5 of the 1,3-dioxane in $\mathbf{1 0}$ required the inversion of configuration at C-3 if D-glucose was used as the starting material. The transformation was achieved in the usual way by borohydride reduction of $1,2: 5,6-\mathrm{di}-\mathrm{O}$-isopropylidene-$\alpha$-D-ribo-hexofurano-3-ulose to the allofuranose as described by Fleet et al. ${ }^{2}$ The required dimesylate 3a was obtained by benzylation, selective acetal cleavage and mesylation as decribed in the literature. ${ }^{3}$ The corresponding p-methoxybenzyl ether (MPM ether) 3b was obtained in a similar way from the known 1,2-O-isopropylidene-3-O-(4-methoxybenzyl)- α-D-allofuranose. ${ }^{4}$ The p-methoxybenzyl ether protecting group was introduced to enable selective deprotection of $5-\mathrm{OH}$ in presence of the double bond in 10 b (see below). The introduction of the double bond in $\mathbf{4 a , b}$ was achieved by treatment of

3a,b with an excess of sodium iodide in butanone. ${ }^{5}$ Cleavage of this double bond served to create the requisite aldehyde group of the sugar as exemplified in the preceding paper. ${ }^{1}$

The next steps required acid-catalyzed cleavage of the acetonides $\mathbf{4 a , b}$ to the anomeric mixtures of the furanoses $\mathbf{5 a}, \mathbf{b}$. These were subjected to reduction with lithium alanate to yield the open chain triols $\mathbf{6 a , b}$. As observed with the corresponding C-3 epimer, ${ }^{1}$ both triols $\mathbf{6 a}$ and $\mathbf{6 b}$ selectively formed the 1,3-dioxanes $\mathbf{7 a}$ and $\mathbf{7 b}$ upon treatment with benzaldehyde in a thermodynamically controlled reaction. The chain extension to the required acetyl compounds 10 a and 10 b was performed by oxidation to the aldehydes 8a,b. Subsequent Grignard reaction with methylmagnesium iodide gave the epimeric mixtures of the secondary alcohols $\mathbf{9 a}, \mathbf{b}$ which were immediately oxidized to the ketones 10a and 10b with pyridinium chromate (PDC)/acetic acid anhydride (Scheme 2).

The MPM ether 10b was cleaved selectively by treatment with dichlorodicyano benzoquinone (DDQ) to afford the alcohol 10c. The alcohol 10c was protected as the trimethylsilyl ether 10d and also the sterically demanding tert-butyldimethylsilyl ether 10e.

With the substrates 10 a,c-e with an equatorial oxygen substituent at $\mathrm{C}-5$ in hand, the addition of the metalated dimethoxybenzenes 11w-z was studied next (Scheme 3). The reaction of the benzyl ether 10 a with $11 \mathbf{w}-\mathbf{z}$ was examined most extensively and the results are summarized in Table 1. The addition of 2-lithio-1,4-dimethoxybenzene (11w) at different temperatures in THF (entries 1-3) resulted in the predominant formation of the desired (R)-isomer 12a over the (S)-compound 13a. The structures of the tertiary alcohols were unambigously established by X-ray structure analysis of the (S)-isomer 13a (see Figure 1).

A temperature dependence with respect to the stereochemical result was not observed (Table 1, entries 1-3). However, the reaction in diethyl ether (entry 4) changed the ratio of $(R):(S)$ from ca. $1.5: 1$ to $1: 1.5$. The addition of chelate breaking reagents such as TMEDA, HMPT or the reaction in dimethoxytetrahydrofuran (entries 5, 6 and 7) decreased the ratio of the (R) - to (S)-isomer 12a:13a.

From the literature ${ }^{6-10}$ it was known that the stereochemistry of the addition of lithium alkyls and aryls on chiral alkoxycarbonyl compounds can be rationalized by the cyclic Cram model.6,11 However, in our system the formation of competing α - and β -

a: $\mathrm{R}=\mathrm{Bzl} ; \mathrm{b}: \mathrm{R}=\mathrm{MPM}$; $\mathbf{c}: \mathrm{R}=\mathrm{H} ; \mathrm{d}: \mathrm{R}=\mathrm{SiMe}_{3} ; \boldsymbol{e}$: $\mathrm{R}=\mathrm{Sit}-\mathrm{BuMe}_{2}$

Scheme 2

10a,c,d,e

11w: $M=\mathrm{Li}$
11x: $M=\mathrm{MgBr}$
11y: $\mathrm{M}=\mathrm{CeCl}_{2}$
11z: $\mathrm{M}=\mathrm{Ti}(\mathrm{OPr})_{3}$

(R)-12a,c,d,e

(S)-13a,c,d,e
a: $\mathrm{R}=\mathrm{Bzz} ; \mathbf{c}: \mathrm{R}=\mathrm{H} ; \mathrm{d}: \mathrm{R}=\mathrm{SiMe}_{3} ; \mathrm{e}: \mathrm{R}=\mathrm{Sit}-\mathrm{BuMe}_{2}$

Scheme 3

Table 1. Reaction of the metal aryls $11 w-11 \mathrm{z}$ with the ketones $10 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}$

Entry	Temp.	Educt	Reagent	Solvent	12a:13a	Yield 12a	Yield 13a
1	$-50{ }^{\circ} \mathrm{C}$	10a	11w	THF	1.6:1	52 \%	35%
2	$-10^{\circ} \mathrm{C}$	10a	11w	THF	$1.5: 1$	58%	34 \%
3	$0^{\circ} \mathrm{C}$	10a	11w	THF	1.8:1	58%	32%
4	$-40{ }^{\circ} \mathrm{C}$	10a	11w	$\mathrm{Et}_{2} \mathrm{O}$	1:1.5	35%	53%
5	$-50{ }^{\circ} \mathrm{C}$	10a	11w	THF, TMEDA	1:1	43 \%	42%
6	$-70{ }^{\circ} \mathrm{C}$	10a	11w	THF, HMPT	1:1	45%	46%
7	$-25^{\circ} \mathrm{C}$	10a	11w	2,5-di-OMe-THF	1:1	40%	41%
8	$-40^{\circ} \mathrm{C}$	10a	11x	THF	1:1.5	34 \%	51%
9	$0^{\circ} \mathrm{C}$	10a	11x	THF	$1: 1.5$	35%	53%
10	$-40{ }^{\circ} \mathrm{C}$	10a	11x	$\mathrm{Et}_{2} \mathrm{O}$	1:1.5	33 \%	49 \%
11	$-78{ }^{\circ} \mathrm{C}$	10a	119	THF	1:70	2%	91%
12	$0^{\circ} \mathrm{C}$	10a	112	THF	-	0 \%	75 \%
13	$-20^{\circ} \mathrm{C}$	10c	11w	THF	-	0%	81 \%
14	$-20^{\circ} \mathrm{C}$	10d	11w	THF	3:1	64%	19\%
15	$-20^{\circ} \mathrm{C}$	10e	11w	THF	1.3:1	both	

Figure 1. The molecular structure of 13a.
chelates is possible, represented by chelate models \mathbf{A} and \mathbf{C} or \mathbf{B} and \mathbf{D} as shown in Scheme 4. Formation of the predominant (R)-12a is realized either by $R e$-attack in the α chelate \mathbf{A} or the Si -attack in the β-chelate \mathbf{B}. In all these models, additional complexation of the lithium cation with the nucleophilic solvent THF is assumed. The stereochemical outcome is reversed by reaction in the less Lewis basic diethyl ether (entry 4). The stereoselectivity is entirely lost by addition of chelate breaking strong Lewis bases such as TMEDA, HMPT or reaction in 2,5-dimethoxytetrahydrofuran (entries 5, 6 and 7).

A: α-chelate, Re-attack

C: α-chelate, Si-attack

B: β-chelate, Si-attack

D: β-chelate, Re-attack

Scheme 4

In non-chelate controlled reactions, the open Felkin-Anh model can be applied as shown by Cohen et al. ${ }^{12}$ and Amouroux et al. ${ }^{13}$ On the other hand, the stereochemical result of the nucleophilic addition of alkyl or aryl Grignard reagents has also been explained by the cyclic Cram model. ${ }^{8-10}$ The ratio of 12a:13a found for the Grignard reagents 11x was 1:1.5 (Table 1 , entries $8-10$). In addition, no temperature or solvent dependence was observed and it remains unclear what model can be applied to rationalize these results.

Furthermore, we investigated the less basic ${ }^{14}$ aryl cerium compound 11 y which could be prepared from the organolithium compound 11w by addition of anhydrous cerium trichloride (compare references 15-17). Cyclic Cram models ${ }^{18,19}$ as well as Felkin-Anh models ${ }^{20}$ have been discussed in the literature to explain the stereoselectivity. A very high (70:1) selectivity in the reaction with the aryl cerium reagent towards the unwanted (S)-isomer 13a was observed. Assuming a β-chelate, similar to \mathbf{B} (Ce instead of Li), the attack occurs from the less hindered Si -side.

Very strong chelates may also be formed with titanium reagents and Reetz et al. proved their existence for the first time experimentally by ${ }^{13} \mathrm{C}$ NMR spectroscopy. ${ }^{21} \mathrm{An}$ outstanding selectivity was observed in the reaction of $\operatorname{ArTi}(\mathrm{O}-i-\mathrm{Pr})_{3}$ with 10 yielding the (S)-isomer 13a exclusively.

These last two examples showed a way to achieve excellent stereoselectivity, but unfortunately in the undesired direction. Therefore, we decided to prepare the sterically more hindered silyl ethers 10d and 10e via the alcohol 10c as described above (Scheme 2). Not surprisingly, the alcohol 10c exclusively yielded the (S)-isomer 13c (entry 13) in agreement with the model for a β-chelate proposed by Horton et al. ${ }^{22}$ (see preceding paper). The structure of 13 c was confirmed by selective benzylation to 13 a . These results indicated that β-chelation (entries 11-13) in models related to the configuration of 10 favors Si-attack to form (S)-13 (model B in Scheme 4).

Considering these general considerations it was interesting to see if the trimethylsilyl ether 10d could effectively break β-chelate formation. In fact, instead of exclusive formation of (S)-isomer, the (R)-isomer 12d was formed predominantly in a 3:1 ratio over 13d (Table 1, entry 14). We expected that the stereoselectivity could be further increased in the reaction of the tert-butyldimethylsilyl ether 10e. However, the excess of 12e over 13 e was only 16% (Table 1 , entry 15).

In conclusion, the stereochemical results shown in Table 1 demonstrate that strong β-chelation can effectively lead to exclusive formation of the (S)-isomers $\mathbf{1 2}$. On the other hand, the diastereofacial differentiation in the α-chelate or the non-chelated Felkin-Ank models is relatively poor.

Inversion of addition sequence

If stereocontrol was excellent in some β-chelate models towards the formation of the (S)-isomers 13 , a reversal of the addition sequence of the organometallic reagents M Me and M-Ar might lead to the corresponding (R)-isomers 12 . Therefore, the arylketones $\mathbf{1 5 a}$ and 15 c were prepared by reaction of the aldehydes $\mathbf{8 a}$ and $\mathbf{8 b}$ with 2-lithio-2,4dimethoxybenzene (11w) to yield the benzyl ethers 14a and the dimethoxybenzyl ethers 14b both as the usual mixture of diastereoisomers. The alcohols $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ were oxidized to the corresponding arylketones $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ without further purification using
$\mathrm{PDC} / \mathrm{Ac}_{2} \mathrm{O}$ in 88 and 87% yield, respectively. The MPM ether 15 b was then oxidatively cleaved using DDQ to afford the alcohol 15 c in 93 \% yield (Scheme 5).

The addition of MeCeCl_{2} on 15a in THF exclusively afforded the (S)-isomer 13a in excellent yield (95%, Table 2, entry 1). The same result was obtained in the reaction of 15 a with MeMgBr in diethyl ether (Table 2, entry 2) (92% of $\mathbf{1 2 a}$). The alcohol $\mathbf{1 5 c}$ was also treated with MeMgBr in diethyl ether. In this case a 5:3 ratio of the adducts 12c and 13 c were formed. These results show that a reversal of the reaction sequence did not result in a reversal of the stereochemical outcome as assumed. Evidently, the conformation and diastereofacial differentiation of the aryl ketones 15 differ from those of the methyl ketones $\mathbf{1 0}$. In addition, the smaller methyl Grignard reagent may differentiate less effectively between the diastereofacial sides on $\mathbf{1 0}$ than the more bulky aryl reagents. The important role of the size of the incoming nucleophile is demonstrated also in the following paper. ${ }^{23}$

EXPERIMENTAL

For general procedures and instrumentation see reference 24.The compounds are oils if not otherwise indicated.

3-O-Benzyl-1,2-O-isopropylidene-5,6-dideoxy- α-D-ribo-hex-5-enofuranose (4a). A solution of dimesylate $3^{3}{ }^{3}(45.11 \mathrm{~g}, 0.097 \mathrm{~mol})$ in dry butanone (600 mL) was treated with $\mathrm{NaI}(72.51 \mathrm{~g}, 0.483 \mathrm{~mol}$) and the mixture was refluxed for 12 h (TLC control). A saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(200 \mathrm{~mL})$ was then added with stirring, the mixture diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and the organic phase separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, washed with water (200 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to yield $\mathbf{4 a}(24.02 \mathrm{~g}, 90 \%)$ as a yellow oil; $[\alpha]_{\mathrm{D}}^{20}$ $+65.1\left(c 1.3, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3020 \mathrm{~cm}^{-1}, 2930,2840,1618,1602,1584,1522$, 1455, 1332, 1247, 1024; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36,1.62\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right), 3.50$ $\left(\mathrm{dd}, J_{3,4}=8.8 \mathrm{~Hz}, J_{2,3}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.47\left(\mathrm{dd}, J_{3,4}=8.8 \mathrm{~Hz}, J_{4,5}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\right.$ H), $4.56(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.62$ and $4.75\left(\mathrm{AB}\right.$-signal, $J_{\mathrm{A}, \mathrm{B}}=12.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.26\left(\mathrm{dt}, J_{5,6 c i s}=10.4 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right)\right), 5.45\left(\mathrm{dt}, J_{5,6 \text { trans }}\right.$ $\left.=17.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right)\right), 5.73\left(\mathrm{~d}, J_{1,2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 5.81$

Scheme 5

Table 2. Reaction of the metalated methyls with the ketones 15a,c

Entry	Temp.	Educt	Reagent	Solvent	$\mathbf{1 2 : 1 3}$	Yield 12	Yield 13
1	$-20^{\circ} \mathrm{C}$	$\mathbf{1 5 a}$	MeCeCl_{2}	THF	-	0%	95%
2	$-20^{\circ} \mathrm{C}$	$\mathbf{1 5 a}$	MeMgI	$\mathrm{Et}_{2} \mathrm{O}$	-	0%	92%
3	$-15^{\circ} \mathrm{C}$	$\mathbf{1 5 c}$	MeMgI	$\mathrm{Et}_{2} \mathrm{O}$	$5: 3$	54%	32%

(ddd, $J_{5,6 \text { trans }}=17.2 \mathrm{~Hz}, J_{5,6 c i s}=10.4 \mathrm{~Hz}, J_{4,5}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $7.27-7.37(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.98,26.26,\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 71.73$ (t, $\mathrm{OCH}_{2} \mathrm{Ph}$), 76.25, 78.60, 81.27, (d, C-2, C-3, C-4), $103.26(\mathrm{~d}, \mathrm{C}-1), 112.43\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 118.33 (t, C-6), 127.45, 127.48, 127.95 (d, $5 \mathrm{C}, \mathrm{C}-\mathrm{Ar}$), 134.37 (d, 5-C), 137.03 (s, C-Ar); MS (CI / NH H_{3}, pos.) $m / z(\%) 304$ (2) [$\left.\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 296(62), 160(5), 108$ (7), 91 (100) $\left[\mathrm{PhCH}_{2}{ }^{+}\right]$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$ (276.33): C, 69.57; H, 7.25. Found: C, 69.48; H 7.31 .

1,2-O-Isopropylidene-5,6-di- O-methanesulfonyl-3-O-(4-methoxybenzyl)- α-D-

 allofuranose (3b). A solution of 1,2-O-isopropylidene-3- O-(4-methoxybenzyl)- α-Dallofuranose ${ }^{4}(9.53 \mathrm{~g}, 28.0 \mathrm{mmol})$ and triethylamine ($7.09 \mathrm{~g}, 70.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 mL) was treated at $0^{\circ} \mathrm{C}$ with methanesulfonyl chloride ($7.71 \mathrm{~g}, 67.1 \mathrm{mmol}$). After 30 min (TLC control) the solution was successively washed with aqueous solutions of $\mathrm{NaHSO} 4, \mathrm{NaHCO}_{3}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield thedimesylate 3b (12.89 g, 93 \%) as an oil; $[\alpha]_{\mathrm{D}}^{20}+62.1\left(c 0.42, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3063$ $\mathrm{cm}^{-1}, 2938,1613,1514 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34,1.56\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$ (acetonide)), 2.99, $3.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{SO}_{3} \mathrm{CH}_{3}\right.$), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.91 (dd, $J_{3,4}=8.9$ $\left.\mathrm{Hz}, J_{2,3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.17\left(\mathrm{dd}, J_{3,4}=8.9 \mathrm{~Hz}, J_{4,5}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 4.33-4.37$ $(\mathrm{m}, 2 \mathrm{H}, 6-\mathrm{H}), 4.58$ and $4.67\left(\mathrm{AB}\right.$-signal, $\left.J_{\mathrm{A}, \mathrm{B}}=11.0 \mathrm{~Hz}, 2 \mathrm{H}, O \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.57(\mathrm{t}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.04-5.08(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.71\left(\mathrm{~d}, J_{1,2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 6.88(\mathrm{~d}$, $\left.J_{\text {ortho }}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.30\left(\mathrm{~d}, J_{\text {ortho }}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 26.47,26.85\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right.$ (acetonide)), $37.70,38.74\left(\mathrm{q}, 2 \times \mathrm{SO}_{3} \mathrm{CH}_{3}\right), 55.30(\mathrm{q}$, $\left.\mathrm{OCH}_{3}\right), 66.71(\mathrm{t}, \mathrm{C}-6), 71.88\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 76.65,77.01,77.49,77.68(\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-$ 5), 104.21 (d, C-1), $113.64\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 113.97$ (d, $\left.2 \times \mathrm{C}-\mathrm{Ar}\right), 128.75$ (s, C-Ar), 130.12 (d, $2 \times \mathrm{C}-\mathrm{Ar}$), 159.69 (s, C-Ar); MS (EI) m / z (\%) 496 (2) [$\left.\mathrm{M}^{+}\right], 365$ (3), 242 (7), 152 (12), 136 (18), 123 (100), 109 (6), 85 (10), 78 (14).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{11} \mathrm{~S}_{2}$ (496.54): C, 45.97 ; $\mathrm{H}, 5.64$. Found: $\mathrm{C}, 45.86 ; \mathrm{H}$, 5.78.

5,6-Dideoxy-1,2-O-isopropylidene-3-O-(4-methoxybenzyl)- α-D-ribo-hex-5-

 enofuranose (4b). A solution of dimesylate $\mathbf{3 b}(11.32 \mathrm{~g}, 22.82 \mathrm{mmol})$ and dry $\mathrm{NaI}(17.38$ $\mathrm{g}, 114 \mathrm{mmol}$) in dry butanone (200 mL) was reacted as described for 4 a to afford the olefin $4 \mathrm{~b}(5.98 \mathrm{~g}, 86 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{20}+53.8\left(c 1.43, \mathrm{CHCl}_{3}\right)$; IR (film) $2990 \mathrm{~cm}^{-1}, 2940$, $2840,1615,1588,1516,1464 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35,1.61$ (s, $6 \mathrm{H}, 2 \mathrm{x}$ CH_{3}), $3.48\left(\mathrm{dd}, J_{3,4}=8.9 \mathrm{~Hz}, J_{2,3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.43-4.48$ $(\mathrm{m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.51-4.54(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.55$ and $4.67\left(\mathrm{AB}-\right.$ signal, $J_{\mathrm{A}, \mathrm{B}}=11.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 5.24\left(\mathrm{~d}, J_{5,6 c i s}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right)\right), 5.43\left(\mathrm{~d}, J_{5,6 \text { trans }}=17.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right)$), $5.73\left(\mathrm{~d}, J_{1,2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 5.80\left(\mathrm{ddd}, J_{5,6 \text { trans }}=17.1 \mathrm{~Hz}\right.$, $\left.J_{5,6 c i s}=10.4 \mathrm{~Hz}, J_{4,5}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.88\left(\mathrm{~d}, J_{\text {ortho }}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.28$ $\left(\mathrm{d}, J_{\text {ortho }}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.37,26.63\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right)$, $55.14\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 71.74\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 77.51,78.94,81.38,(\mathrm{~d}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4), 103.65(\mathrm{~d}$, $\mathrm{C}-1), 112.72$ ($\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 113.73$ (d, $2 \times \mathrm{C}-\mathrm{Ar}$), 118.42 (t, C-6), 129.45 ($\mathrm{d}, 2 \times \mathrm{C}-\mathrm{Ar}$), 129.49 (s, C-Ar), 134.86 (d, C-5), 159.38 (s, C-Ar); MS (CI / NH N_{3}, pos.) $m / z(\%) 324$ (24) $\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 282(18), 266(62), 236$ (14), 224 (30), 138 (21), 121 (100).Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ (306.36): C, 66.67; H, 7.19. Found: C, 66.55; H, 7.32.
α - and β-3-O-Benzyl-5,6-dideoxy-D-ribo-hex-5-enofuranose (5a). A solution of acetonide $4 \mathrm{a}(10.0 \mathrm{~g}, 36.2 \mathrm{mmol})$ in THF $(250 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$ was refluxed for 4 h (TLC control). The mixture was neutralized by addition of 2 N NaOH , the organic
phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield an anomeric mixture of the oily enofuranose $5 \mathrm{a}(8.1 \mathrm{~g}, 95 \%)$ which was reduced in the subsequent reaction without further purification; $[\alpha]_{\mathrm{D}}^{20}+56.4(c$ 1.54, CHCl_{3}); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3555 \mathrm{~cm}^{-1}, 3067,3036,2936,2876,1607 ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}\right)$ selected data: $\delta 4.45-4.71\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}, 2 \times 4-\mathrm{H}\right), 5.15-5.32(\mathrm{~m}, 6$ $\mathrm{H}, 2 \times 1-\mathrm{H}, 4 \times 6-\mathrm{H}), 5.74$ (ddd, $J_{5,6 \text { trans }}=16.8 \mathrm{~Hz}, J_{5,6 c i s}=10.7 \mathrm{~Hz}, J_{4,5}=6.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}_{2}$ (α-anomer)), 5.90 (ddd, $J_{5,6 \text { trans }}=17.3 \mathrm{~Hz}, J_{5,6 c i s}=10.1 \mathrm{~Hz}, J_{4,5}=7.1 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$ (β-anomer)$)$, $7.26-7.40(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), α-anomer: selected data: $\delta 72.88\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 74.07(\mathrm{~d}, \mathrm{C}-2), 80.89,80.97$ (d, C-3, C-4), 96.42 (d, C-1), 117.14 (t, C-6), 135.44 (d, C-5), 136.82 ($\mathrm{s}, \mathrm{C}-\mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}), β-anomer: selected data: $\delta 72.72\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 75.45$ (d, C-2), $82.15,82.19(\mathrm{~d}$, C-3, C-4), 101.74 (d, C-1), 117.57 (t, C-6), 137.59 (d, C-5), 137.20 (s, C-Ar); MS (CI / NH_{3}, pos.) $m / z(\%) 254(5)\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 150(12), 145(35), 91(100)\left[\mathrm{PhCH}_{2}{ }^{+}\right]$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ (236.27): C, $66.10 ; \mathrm{H}, 6.78$. Found: $\mathrm{C}, 65.94 ; \mathrm{H}, 6.89$.
α - and β-5,6-Dideoxy-3-O-(4-methoxybenzyl)-D-ribo-hex-5-enofuranose (5b). A solution of acetonide $\mathbf{4 b}(5.01 \mathrm{~g}, 16.4 \mathrm{mmol})$ in THF (125 mL) and $2 \mathrm{~N} \mathrm{HCl}(125 \mathrm{~mL})$ was refluxed for 3 h as described for $\mathbf{5 a}$ to afford the oily enofuranose $\mathbf{5 b}(3.96 \mathrm{~g}, 91 \%)$ as a 1:1 anomeric mixture; $[\alpha]_{\mathrm{D}}^{20}+39.3\left(c \mathrm{c} 1.62, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3600 \mathrm{~cm}^{-1}, 3555$, 3009, 2938, 2915, 2840, 1613, 1514; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}$) selected data: δ 3.79 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}, \beta$-anom.) 3.85 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}, \alpha$-anom.), 4.41 and 4.71 (AB -signal, $J_{\mathrm{A}, \mathrm{B}}=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}, \beta$-anom. $), 5.26\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right), \beta-\right.$ anom.), 5.37 (d, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2},\left(\mathrm{H}_{\text {trans }}\right), \beta$-anomer), 5.90 (ddd, $J=17.2 \mathrm{~Hz}$, $J=10.2 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}, \beta$-anom.) , $5.72-5.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}, \alpha-\right.$ anom.); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (α-anomer) $\delta 55.72\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 70.45(\mathrm{~d}, \mathrm{C}-2)$, 73.22 (t, $\mathrm{OCH}_{2} \mathrm{Ar}$), 81.24, 81.30, (d, C-3, C-4), 97.08 (d, C-1), 114.51 (d, $2 \times \mathrm{C}-\mathrm{Ar}$, 117.76 (t, C-6), 129.21 (s, C-Ar), 130.13 (d, $2 \times \mathrm{C}-\mathrm{Ar}$), 135.87 (d, C-5), 138.12, 160.16 ($\mathrm{s}, 2 \times \mathrm{C}-\mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (β-anomer) $\delta 55.09$ ($\mathrm{d}, \mathrm{OCH}_{3}$), 68.84 (t, $\mathrm{OCH}_{2} \mathrm{Ar}$), 75.11 (d, C-2), 75.71 (d, C-3), 84.51 (d, C-4), $105.59(\mathrm{~d}, \mathrm{C}-1), 113.65$ (d, 2 x C-Ar), 117.17 (t, C-6), 129.21 ($\mathrm{s}, \mathrm{C}-\mathrm{Ar}$), 129.57 (d, $2 \times \mathrm{C}-\mathrm{Ar}$), 135.11 ($\mathrm{s}, \mathrm{C}-\mathrm{Ar}$), 137.19 (d, C-5), 159.11 (s, C-Ar); MS (CI / NH ${ }_{3}$, pos.) $m / z(\%) 284(8)\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 256$ (100), 224 (8), 164 (38), 146 (97), 121 (44).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$ (266.29): C, 63.16; $\mathrm{H}, 6.77$. Found: $\mathrm{C}, 63.31 ; \mathrm{H}, 6.62$.
($2 S, 3 R, 4 R$)-3-O-Benzyl-5-hexen-1,2,4-triol (6a). A solution of the furanose 5 a $(15.02 \mathrm{~g}, 63.3 \mathrm{mmol})$ in dry THF (350 mL) was treated portionwise with lithium alanate ($6.30 \mathrm{~g}, 166.7 \mathrm{mmol}$). The suspension was refluxed for 3 h (TLC control) and then hydrolyzed carefully by dropwise addition of ice-water. The organic phase was separated, the aqueous phase acidified by addition of 3 N HCl and extracted with ethyl acetate (2 x 150 mL). The combined organic phases were successively washed with aqueous NaHCO_{3}, water and brine. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield the triol 6a after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / 3 \%\right.$ methanol) $(12.02 \mathrm{~g}, 85 \%)$ which solidified: $\mathrm{mp} 68{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+17.2\left(c 0.26, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3535 \mathrm{~cm}^{-1}, 3065,2886,1605,1455 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.45(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.66\left(\mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=11.6 \mathrm{~Hz}, J_{1 \mathrm{a}, 2}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H}\right), 3.77\left(\mathrm{dd}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=\right.$ $\left.11.6 \mathrm{~Hz}, J_{1 \mathrm{~b}, 2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}\right), 3.81-3.86(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.34(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ H), 4.58 and 4.65 (AB-signal, $J_{\mathrm{A}, \mathrm{B}}=10.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), $5.21\left(\mathrm{dt}, J_{5,6 c i s}=11.1 \mathrm{~Hz}\right.$, $\left.J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right)\right), 5.34\left(\mathrm{dt}, J_{5,6 \text { trans }}=17.0 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH} \mathrm{C}_{2}\right.$ $\left(\mathrm{H}_{\text {trans }}\right)$), 5.99 (ddd, $J_{5,6 \text { trans }}=17.0 \mathrm{~Hz}, J_{5,6 c i s}=10.8 \mathrm{~Hz}, J_{4,5}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 7.24-7.34 (m, 5 H, Ar-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 63.31(\mathrm{t}, \mathrm{C}-1), 72.61,73.50$, 82.00 (d, C-2, C-3, C-4), 73.75 (t, $\mathrm{OCH}_{2} \mathrm{Ph}$), 116,61 (t, C-6), 127.86, 127.92, 128.36 (d, 5 x C-Ar), 137.27 (d, C-5), 137.75 (s, C-Ar); MS (EI) $m / z(\%) 238$ (1) [$\left.\mathrm{M}^{+}\right], 220$ (5), 181 (12), 108 (67), 91 (100), 85 (10).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$ (238.28): C, $65.55 ; \mathrm{H}, 7.56$. Found: $\mathrm{C}, 65.48 ; \mathrm{H}, 7.69$.
(2S,3R,4R)-3-O-(4-Methoxybenzyl)-5-hexen-1,2,4-triol (6b). A solution of furanose $5 \mathrm{~b}(3.23 \mathrm{~g}, 12.1 \mathrm{mmol})$ in dry THF (80 mL) was reduced with lithium alanate $(3.20 \mathrm{~g}, 84.7 \mathrm{mmol})$ as described for 5 a to afford the triol $\mathbf{6 b}(2.17 \mathrm{~g}, 67 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{20}+25.4\left(c 0.74, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3550 \mathrm{~cm}^{-1}, 3023,2950,2882,1613,1509$, $1455 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.49(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.54-3.76(\mathrm{~m}, 6 \mathrm{H}, 3$ $\mathrm{x} \mathrm{OH}, 1-\mathrm{H}, 2-\mathrm{H}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.35(\mathrm{t}, J=5.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.51$ and $4.59(\mathrm{AB}-$ signal, $\left.J_{\mathrm{A}, \mathrm{B}}=10.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 5.22-5.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}, J=10.6 \mathrm{~Hz}\right)\right.$, $5.33-5.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}, J=16.9 \mathrm{~Hz}\right), 6.00\left(\mathrm{ddd}, J_{5, \text { trans }}=16.9 \mathrm{~Hz}, J_{5,6 c i s}\right.\right.$ $\left.=10.6 \mathrm{~Hz}, J_{4,5}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.87\left(\mathrm{~d}, J_{\text {ortho }}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.24(\mathrm{~d}$, $\left.J_{\text {ortho }}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.08\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 63.19(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{OH}$), $72.41,73.40(\mathrm{~d}, \mathrm{C}-2, \mathrm{C}-3), 73.32\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 81.36(\mathrm{~d}, \mathrm{C}-4), 113.73(\mathrm{~d}, 2 \mathrm{x} \mathrm{C}-$ Ar), 116.49 (t, C-6), 129.47 (d, $2 \times \mathrm{C}-\mathrm{Ar}$), 129.66 (s, C-Ar), 137.15 (d, C-5), 159.22 (s, $\mathrm{C}-\mathrm{Ar}) ; \mathrm{MS}(\mathrm{FAB}, \mathrm{NBA}) \mathrm{m} / \mathrm{z}(\%) 267$ (2) [$\left.\mathrm{M}^{+}-\mathrm{H}\right], 241$ (4), 121 (100) [$\left.\mathrm{MPM}^{+}\right]$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$ (268.31): C, 62.69; $\mathrm{H}, 7.46$. Found: $\mathrm{C}, 62.61 ; \mathrm{H}, 7.39$.
($2 R, 4,5,5 R, 6 R$)-5-Benzyloxy-4-hydroxymethyl-2-phenyl-6-vinyl-[1,3]dioxane (7a). A solution of triol 6 a [$\left(11.03 \mathrm{~g}\right.$, $(46.2 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(300 \mathrm{~mL})$ was treated with benzaldehyde $(19.61 \mathrm{~g}, 184.8 \mathrm{mmol})$ and trifluoroacetic acid $(1.5 \mathrm{~mL})]$. The solution was refluxed for 7 h (TLC control) and the water formed during the reaction was trapped by $3 \AA$ molecular sieves placed in a dropping funnel which was used as a reflux column. The solution was then washed with aqueous $\mathrm{NaHCO}_{3},(2 \times 100 \mathrm{~mL})$, the organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield the benzylidene acetal $7 \mathrm{a}(12.00 \mathrm{~g}, 80 \%)$ which solidified as white crystals: $\mathrm{mp} 91.5^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+24.38\left(c 1.3, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3374 \mathrm{~cm}^{-1}, 3064,2945,2867,1498,1453 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.47(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.75-3.80$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{O}_{2} \mathrm{OH}\right), 3.91-3.94(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.19(\mathrm{dd}, J=9.2 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, 4.57 and $4.69\left(\mathrm{AB}\right.$-signal, $\left.J_{\mathrm{A}, \mathrm{B}}=10.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.33(\mathrm{dt}, J=10.6 \mathrm{~Hz}, J=1.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}\right)\right), 5.55\left(\mathrm{dt}, J=17.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right)\right), 5.64$ (s, $1 \mathrm{H}, 2-\mathrm{H}$), 6.07 (ddd, $J=17.2 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $7.34-7.41$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.54-7.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.98(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{OH}$), 73.49, 80.49, 81.35 (d, C-4, C-5, C-6), 74.71 (t, $\mathrm{OCH}_{2} \mathrm{Ph}$), 100.38 (d C-2), 118.65 ($\mathrm{t}, \mathrm{CH}=\mathrm{CH}_{2}$), $126.27,128.09,128.14,128.27,128.52,129.07$ (d, $10 \times \mathrm{C}-\mathrm{Ar}$), $135.06\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}_{2}\right), 137.48,137.50(\mathrm{~s}, 2 \times \mathrm{C}-\mathrm{Ar}) ; \mathrm{MS}(\mathrm{EI}) m / z(\%) 326(1)\left[\mathrm{M}^{+}\right], 269$ (3), 179 (20), 164 (40), 91 (100) $\left[\mathrm{PhCH}_{2}{ }^{+}\right]$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$ (326.39): C, 73.62; $\mathrm{H}, 6.75$. Found: $\mathrm{C}, 73.64 ; \mathrm{H}, 6.75$.
($\mathbf{2 R}, 4 R, 5 R, 6 R$)-4-hydroxymethyl-5-(4-methoxybenzyloxy)-2-phenyl-6-vinyl[1,3]dioxane (7 b). A solution of the triol $\mathbf{6 b}$ ($982 \mathrm{mg}, 3.7 \mathrm{mmol}$) in dry $\mathrm{CHCl}_{3}(30 \mathrm{~mL}$) was converted to the benzylidene acetal as described for 7 a to yield $\mathbf{7 b}(1.304 \mathrm{~g}, 78 \%)$ as a white solid: $\mathrm{mp} 122^{\circ} \mathrm{C}$ (diethyl ether/petroleum ether); $[\alpha]_{\mathrm{D}}^{20}+37.1$ (c 0.32, CHCl_{3}); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3600 \mathrm{~cm}^{-1}, 3065,2876,1613,1514 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.10(\mathrm{bs}, 1$ $\mathrm{H}, \mathrm{OH}), 3.44-3.50(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.75-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.92-3.96(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.53$ and $4.64\left(\mathrm{~A}, \mathrm{~B}-\right.$ signal, $J_{\mathrm{A}, \mathrm{B}}=$ $\left.10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.38\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}\right)\right.$), $5.57(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH} \mathrm{C}_{2}\left(\mathrm{H}_{\text {trans }}\right)$), $5.65(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.09$ (ddd, $J=17.1 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, J=$ $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.91\left(\mathrm{~d}, J_{\text {ortho }}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.27\left(\mathrm{~d}, J_{\text {ortho }}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{Ar}-\mathrm{H}$) , $7.37-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 55.12\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 61.81\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}\right), 72.99,80.34,81.23(\mathrm{~d}, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-6)$,
74.19 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}$), 100.20 (d, C-2), 113.74 (d, $2 \times \mathrm{C}-\mathrm{Ar}$), 118.46 (t, $\mathrm{CH}=\mathrm{CH}_{2}$), 126.12, 128.11, 128.90, 129.72 (d, $7 \times \mathrm{C}-\mathrm{Ar}$), 129.48, 137.33, 159.35 ($\mathrm{s}, 3 \times \mathrm{C}-\mathrm{Ar}$), 134.95 (d, $\mathrm{CH}=\mathrm{CH}_{2}$); $\mathrm{MS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right.$, pos.) $\mathrm{m} / \mathrm{z}(\%) 374$ (1) $\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 357(5)\left[\mathrm{M}^{+}+\mathrm{H}\right], 179$ (18), 137 (42), 121 (100) [$\left.\mathrm{MPM}^{+}\right]$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$ (356.42): C, 70.79; $\mathrm{H}, 6.74$. Found: C. $70.48 ; \mathrm{H}, 6.72$.
($\mathbf{2 R}, \mathbf{4 R}, 5 R, 6 R$)-5-Benzyloxy-4-formyl-2-phenyl-6-vinyl-[1,3]dioxane (8a). A solution of freshly prepared pyridinium dichromate (PDC) ($418 \mathrm{mg}, 1.11 \mathrm{mmol}$) and acetic acid anhydride ($484 \mathrm{mg}, 4.74 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with a solution of the alcohol $7 \mathrm{a}(514 \mathrm{mg}, 1.58 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was refluxed for 2 h , the chromium salts were precipated by addition of ethyl acetate and the filtered solution was passed through a column of silica gel and eluted with ethyl acetate. The colorless filtrate was evaporated at reduced pressure and traces of acetic acid and pyridine were removed by repeated (3 x) azeotropic distillation with toluene to afford an oil of $8 \mathrm{a}(476 \mathrm{mg} 93 \%)$.
($2 R, 4 S, 5 R, 6 R$)-4-formyl-5-(4-methoxybenzyloxy)-2-phenyl-6-vinyl-[1,3]dioxane (8b). Alcohol 7b ($634 \mathrm{mg}, 1.78 \mathrm{mmol}$) was oxidized with PDC ($467 \mathrm{mg}, 1.24 \mathrm{mmol}$) as described for $\mathbf{8 a}$ to afford the aldehyde $\mathbf{8 b}$ ($573 \mathrm{mg}, 91 \%$) as an oil.
$(1 R)$ - and ($1 S, 2 R, 4 R, 5 R, 6 R$)-5-Benzyloxy-4-[1-hydroxyethyl]-2-phenyl-6-vin-yl-[1,3]dioxane (9a). A solution of methylmagnesium iodide [prepared from magnesium turnings ($92 \mathrm{mg}, 3.78 \mathrm{mmol}$) and methyl iodide ($534 \mathrm{mg}, 3.76 \mathrm{mmol}$) in dry diethyl ether $(20 \mathrm{~mL})]$ was treated with a solution of the aldehyde $8 \mathbf{~}(300 \mathrm{mg}, 0.923 \mathrm{mmol})$ in diethyl ether (20 mL). The solution was stirred for 12 h at $20^{\circ} \mathrm{C}$ and was then hydrolyzed by addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with diethyl ether ($2 \times 20 \mathrm{~mL}$). The combined organic phases were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield the alcohol 9 a ($294 \mathrm{mg}, 94 \%, 1: 1$ mixture of diastereoisomers) which was oxidized to the ketone without further purification.
($1 S$)- and ($1 R, 2 R, 4 S, 5 R, 6 R$)-4-[1-hydroxyethyl]-5-(4-methoxybenzyloxy)-2-phenyl-6-vinyl-[1,3]dioxane (9 b). Aldehyde $\mathbf{8 b}(111 \mathrm{mg}, 0.31 \mathrm{mmol})$ was reacted with methylmagnesium iodide [from Mg ($135 \mathrm{mg}, 5.55 \mathrm{mmol}$) and methyl iodide (112 mg , $5.51 \mathrm{mmol})$] as described for 9 a to afford 9 b as an oily $1: 1$ mixture of diastereoisomers ($491 \mathrm{mg}, 72 \%$).
($2 R, 4 R, 5 R, 6 R$)-4-Acetyl-5-benzyloxy-2-phenyl-6-vinyl-[1,3]dioxane (10a). The secondary alcohol $9 \mathrm{a}(326 \mathrm{mg}, 0.96 \mathrm{mmol})$ was oxidized with $\mathrm{PDC} / \mathrm{Ac}_{2} \mathrm{O}(248 \mathrm{mg}, 0.66$
$\mathrm{mmol}) /(294 \mathrm{mg}, 2.88 \mathrm{mmol})$ as described for $\mathbf{8 a}$ to afford the oily ketone $\mathbf{1 0 a}(308 \mathrm{mg}$, 95%); $\alpha]_{\mathrm{D}}^{20}+46.8\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3065 \mathrm{~cm}^{-1}, 2872,1730(\mathrm{C}=\mathrm{O}), 1455$, 1395; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.56(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $4.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.22-4.28(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.61$ and $4.67\left(\mathrm{AB}-\right.$ signal, $J_{\mathrm{A}, \mathrm{B}}=$ $\left.10.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.40\left(\mathrm{dt}, J=10.6 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right)\right), 5.59$ (dt, $J=17.2 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right)$), $5.68(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.09$ (ddd, $J=$ $17.2 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $7.30-7.57(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.15\left(\mathrm{q}, \mathrm{CH}_{3}\right), 73.56(\mathrm{~d}, \mathrm{C}-6), 74.25\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 81.28,83.66(\mathrm{~d}$, $\mathrm{C}-4, \mathrm{C}-5$), $100.30(\mathrm{~d}, \mathrm{C}-2), 119.09\left(\mathrm{t}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 126.18, $128.23,128.45,128.55,129.17$ (d, $10 \times \mathrm{C}-\mathrm{Ar}$), $134.50\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 136.98, 137.27 ($\mathrm{s}, 2 \times \mathrm{C}-\mathrm{Ar}$), 204.42, ($\mathrm{s}, \mathrm{C}-7$); MS (CI / NH3, pos.) $m / z(\%) 356(24)\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 256(22), 250(43), 233$ (100), 177 (8), 121 (10), 91 (8).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4}$ (338.40): C, $74.56 ; \mathrm{H}, 6.51$. Found: $\mathrm{C}, 74.07 ; \mathrm{H}, 6.48$.
($\mathbf{2 R}, 4 R, 5 R, 6 R$)-4-Acetyl-5-(4-methoxybenzyloxy)-2-phenyl-6-vinyl-[1,3]dioxane (10b). The mixture of epimeric alcohols $9 \mathbf{b}(364 \mathrm{mg}, 0.98 \mathrm{mmol})$ was oxidized with PDC ($256 \mathrm{mg}, 0.68 \mathrm{mmol}$) and acetic acid anhydride ($300 \mathrm{mg}, 2.95 \mathrm{mmol}$) as described for 8a to yield the ketone $\mathbf{1 0 b}$ ($302 \mathrm{mg}, 86 \%$) which solidified as a white solid: mp 104 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+39.1\left(c \quad 0.38, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3056 \mathrm{~cm}^{-1}, 2954,2863,1745(\mathrm{C}=\mathrm{O})$, 1641, 1453; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.28\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.56(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ $\mathrm{H}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 4-\mathrm{H}), 4.18-4.25(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.53$ and 4.59 (A,B-signal, $\left.J_{\mathrm{A}, \mathrm{B}}=10.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 5.38-5.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}, J=\right.\right.$ $10.5 \mathrm{~Hz})$), $5.54-5.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}, J=17.2 \mathrm{~Hz}\right)\right.$), $5.66(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.08$ (ddd, $\left.J=17.2 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.89\left(\mathrm{~d}, J_{\text {ortho }}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Ar-H), $7.25\left(\mathrm{~d}, J_{\text {ortho }}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.38-7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.97(\mathrm{q}, \mathrm{C}-2 \mathrm{Z}), 55.11\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 73.15,73.74,81.16(\mathrm{~d}, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-6)$, $83.60\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 100.13(\mathrm{~d}, \mathrm{C}-2), 113.67(\mathrm{~d}, 2 \times \mathrm{C}-\mathrm{Ar}), 118.83\left(\mathrm{t}, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.06$, 128.11, 128.98, 130.03 ($\mathrm{d}, 7 \times \mathrm{C}-\mathrm{Ar}$), $134.47\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 136.88 ($\mathrm{s}, 2 \times \mathrm{C}-\mathrm{Ar}$), 159.35 (s, C-Ar), 204.29 (s, C-1'); MS (CI $/ \mathrm{NH}_{3}$, pos.) $m / z(\%) 386(13)\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 266(100)$, 233 (21), 121 (16), 85 (8).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$ (368.43): C, 71.74; $\mathrm{H}, 6.52$. Found: $\mathrm{C}, 71.65 ; \mathrm{H}, 6.63$.
($2 R, 4 R, 5 R, 6 R$)-4-Acetyl-5-hydroxy-2-phenyl-6-vinyl-[1,3]dioxane (10c). A suspension of the MPM ether $\mathbf{1 0 b}$ ($180 \mathrm{mg}, 0.5 \mathrm{mmol}$), dichlorodicyano benzoquinone (DDQ) ($159 \mathrm{mg}, 0.7 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ and water (0.4 mL) was stirred vigorously
at $20{ }^{\circ} \mathrm{C}$ for 24 h (TLC control). The mixture was filtered over celite and the red filtrate was washed with aqueous NaHCO_{3}. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ the alcohol $10 \mathrm{c}(109 \mathrm{mg}, 90 \%)$ as white needles: $\mathrm{mp} 90^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $)$; $[\alpha]_{\mathrm{D}}^{20}+47.2\left(c 0.12, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3065$ $\mathrm{cm}^{-1}, 2847,1789,1604,1391 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.42$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $3.63(\mathrm{dt}, J=9.1 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.04(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $4-\mathrm{H}), 4.11-4.15(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 5.33-5.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}, J=10.7 \mathrm{~Hz}\right)\right.$), $5.49-$ $5.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ ($\left.\mathrm{H}_{\text {trans }}, J=17.2 \mathrm{~Hz}\right)$), $5.70(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.05(\mathrm{ddd}, J=17.2 \mathrm{~Hz}$, $\left.J=10.7 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.38-7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 26.70(\mathrm{q}, \mathrm{C}-2$) $, 67.49(\mathrm{~d}, \mathrm{C}-5), 80.62(\mathrm{~d}, \mathrm{C}-6), 83.22(\mathrm{~d}, \mathrm{C}-4), 100.53(\mathrm{~d}, \mathrm{C}-2)$, $118.22\left(\mathrm{t}, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.14,128.27,129.16(\mathrm{~d}, 5 \times \mathrm{C}-\mathrm{Ar}), 133.96\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}_{2}\right), 137.01$ (s, C-Ar), 210.70 (s, C-1'); MS (CI / NH ${ }_{3}$, pos.) $m / z(\%) 266(28)\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 160(16)$, 143 (100) [$\left.\mathrm{M}^{+}-\mathrm{PhCO}\right]$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$ (248.28): C, 67.74; $\mathrm{H}, 6.45$. Found: $\mathrm{C}, 67.59 ; \mathrm{H}, 6.32$.
($\mathbf{2 R}, 4 \boldsymbol{R}, 5 R, 6 R$)-4-Acetyl-2-phenyl-5-trimethylsilanyloxy-6-vinyl-[1,3]dioxane (10d). A solution of the alcohol $10 \mathrm{c}(98 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dry THF (1.5 mL) was treated successively with pyridine ($55 \mathrm{mg}, 0.7 \mathrm{mmol}$) and trimethylsilyl chloride ($106 \mathrm{mg}, 0.99$ mmol) and the suspension was stirred for 24 h at $20^{\circ} \mathrm{C}$. The mixture was then diluted with diethyl ether (5 mL) and hydrolyzed by addition of $1 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with diethyl ether ($2 \times 3 \mathrm{~mL}$). The combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated at reduced pressure and purified by filtration through a short column of silica gel to yield the silyl ether 10c (106 $\mathrm{mg}, 84 \%$) as an oil. $[\alpha]_{\mathrm{D}}^{20}+56.2\left(c 0.17, \mathrm{CHCl}_{3}\right.$); IR (film) $2963 \mathrm{~cm}^{-1}, 2843,1726$, 1496; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.67(\mathrm{t}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.07-4.12(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 6-\mathrm{H}), 5.35\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ $\left(\mathrm{H}_{\text {cis }}\right)$), $5.49\left(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right)\right), 5.67(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 5.95$ (ddd, $J=$ $\left.17.1 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.37-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.51-7.55$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.46\left(\mathrm{q}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.96(\mathrm{q}, \mathrm{C}-2$), 67.78 (d, C-5), 82.43, 85.34 (d, C-4, C-6), 100.10 (d, C-2), 119.03 (t, $\mathrm{CH}=\mathrm{CH}_{2}$), 126.05, 128.08, 128.94 (d, $5 \times \mathrm{C}-\mathrm{Ar}$), 134.23 (d, $\mathrm{CH}=\mathrm{CH}_{2}$), 136.94 (s, $\mathrm{C}-\mathrm{Ar}$), 204.10 ($\mathrm{s}, \mathrm{C}-\mathrm{l}^{\prime}$); $\mathrm{MS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right.$, neg.) $m / z(\%) 319$ (3) [$\left.\mathrm{M}^{+}-\mathrm{H}\right], 283$ (2), 190 (14), 121 (12), 85 (100).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}$ (320.46): C, $63.75 ; \mathrm{H}, 7.50$. Found: $\mathrm{C}, 63.94 ; \mathrm{H}$, 7.64.
($2 R, 4 R, 5 R, 6 R$)-4-Acetyl-2-phenyl-5-tert-butyldimethylsilanyloxy-6-vinyl[1,3]dioxane (10e). A solution of alcohol 10 c ($64 \mathrm{mg}, 0.26 \mathrm{mmol}$), imidazole (112 mg , 1.64 mmol) and tert-butyldimethylsilyl chloride ($170 \mathrm{mg}, 1.13 \mathrm{mmol}$) in dry DMF (1 mL) was stirred for 4 days at $70^{\circ} \mathrm{C}$ (TLC control). The reaction mixture was hydrolyzed by addition of water (1 mL) and extracted twice with diethyl ether (2×10 $\mathrm{mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated and purified by filtration through a short column of silica gel to yield the oily silyl ether $\mathbf{1 0 e}$ ($69 \mathrm{mg}, 75 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.09(\mathrm{~s}, 3 \mathrm{H}$, SiCH_{3}), $0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.74(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}, 4-$ $\mathrm{H}, 6-\mathrm{H}), 5.37\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right)\right), 5.52\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ $\left(\mathrm{H}_{\text {trans }}\right)$), $5.69(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.02$ (ddd, $J=17.2 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}_{2}$), $7.40-7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.37\left(\mathrm{q}, \mathrm{SiCH}_{3}\right)$, $3.66\left(\mathrm{q}, \mathrm{SiCH}_{3}\right), 17.83\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.63\left(\mathrm{q}, 3 \times \mathrm{CH}_{3}\right), 26.99\left(\mathrm{q}, \mathrm{COCH}_{3}\right), 67.52(\mathrm{~d}, \mathrm{C}-$ 5), 82.57, 85.89 (d, C-4, C-6), 100.03 (d, C-2), 119.19 (t, $\mathrm{CH}=\mathrm{CH}_{2}$), 126.07, 128.06, 128.92 (d, $\mathrm{Ar}-\mathrm{C}$), 134.51 (d, $\mathrm{CH}=\mathrm{CH}_{2}$), 137.00 ($\mathrm{s}, \mathrm{Ar}-\mathrm{C}$), 20369 (s, CO).

Reaction of metallated 2,5 -dimethylbenzene with the methyl ketone 10a.

Method 1: A solution of 2-bromo-1,4-dimethoxybenzene ($650 \mathrm{mg}, 3.0 \mathrm{mmol}$) in dry THF (10 mL) was treated at $-80^{\circ} \mathrm{C}$ with a solution of n - $\mathrm{BuLi}(2 \mathrm{~mL}, 1.5 \mathrm{M}$ in n-hexane, 1 equiv). The solution was stirred for 15 min at $-50^{\circ} \mathrm{C}$ and was then treated with a solution of ketone 10 a ($501 \mathrm{mg}, 1.5 \mathrm{mmol}$) in dry THF (5 mL). Stirring was continued for 30 min at the temperatures indicated in Table 1. The reaction was then quenched with aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$, the phases were separated and the aqueous phase extracted with diethyl ether ($2 \times 15 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated at reduced pressure. The residue was separated by column chromatography on silica gel (petroleumether/ 15% ethyl acetate) to yield the isomers 12a and 13a as indicated in Table 1. The reaction was also performed in diethyl ether (entry 4), by addition of tetramethylenediamine (TMEDA) ($348 \mathrm{mg}, 3.0 \mathrm{mmol}$, entry 5) or hexamethylphosphoric acid triamide (HMPT) ($538 \mathrm{mg}, 3.0 \mathrm{mmol}$, entry 6) or in 2,5-dimethoxytetrahydrofuran at $-25^{\circ} \mathrm{C}$ (entry 7).

Method 2: A solution of 2-bromo-1,4-dimethoxybenzene ($650 \mathrm{mg}, 3.0 \mathrm{mmol}$) in dry THF (15 mL) was lithiated at $-60^{\circ} \mathrm{C}$ with $n-\operatorname{BuLi}(2 \mathrm{~mL}, 1.5 \mathrm{M}$ in n-hexane, 1 equiv).

The solution was added dropwise at $-90^{\circ} \mathrm{C}$ to a suspension of $\mathrm{CeCl}_{3}(1.481 \mathrm{~g}, 6.0 \mathrm{mmol})$ in dry THF (20 mL) and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. A solution of ketone $10 \mathrm{a}(499 \mathrm{mg}, 1.5 \mathrm{mmol})$ in dry THF (5 mL) was then added and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ to yield the ratio of 12a/13a indicated in Table 1 (entry 8).
Method 3: A suspension of lithium ($112 \mathrm{mg}, 16 \mathrm{mmol}$), magnesium chloride ($785 \mathrm{mg}, 8$ mmol) and naphthalene ($218 \mathrm{mg}, 17 \mathrm{mmol}$) in dry THF (10 mL) was stirred vigorously for 36 h at $20^{\circ} \mathrm{C}$. The black suspension of highly active magnesium was then treated with a solution of 2-bromo-1,4-dimethoxybenzene ($650 \mathrm{mg}, 3.0 \mathrm{mmol}$) in dry THF (5 mL) and the mixture was refluxed for 2 h . The Grignard reagent was then treated with a solution of ketone 10a at the temperatures indicated in Table 1 (entries 9 and 10). The reaction was also performed in diethyl ether (entry 11).

Method 4: Chlorotriisopropoxy titanium was prepared by mixing a solution of $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-$ $\operatorname{Pr})_{4}(21.31 \mathrm{~g}, 0.075 \mathrm{~mol})$ in dry n-hexane $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ with $\mathrm{TiCl}_{4}(4.75 \mathrm{~g}, 0.025 \mathrm{~mol})$. The solvent was removed and the residue was distilled at reduced pressure (0.1 mbar) to yield a colorless liquid ($23.6 \mathrm{~g}, 90 \%$), bp: $53^{\circ} \mathrm{C}$. A solution of 2-bromo-1,4dimethoxybenzene ($416 \mathrm{mg}, 1.9 \mathrm{mmol}$) in dry THF (5 mL) was lithiated at $-90^{\circ} \mathrm{C}$ with $n-\operatorname{BuLi}\left(1.2 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in n-hexane, $1.9 \mathrm{mmol}, 1$ equiv). After $10 \mathrm{~min} \operatorname{ClTi}(O-i-\mathrm{Pr})_{3}(0.95$ $\mathrm{mL}, 2 \mathrm{M}$ in n-hexane, 1 equiv) was added and the yellow suspension was allowed to warm to $0^{\circ} \mathrm{C}$ and react with ketone $10 \mathrm{a}(498 \mathrm{mg}, 1.5 \mathrm{mmol})$ in dry THF (5 mL) (entry 12, Table 1).

Data for ($2 R, 4 R, 5 R, 6 R$)-5-Benzyloxy-4-[(1R)-1-hydroxy-1-(2,5-dimethoxy-phenyl)-ethyl]-2-phenyl-6-vinyl-[1,3]dioxane (12a). $[\alpha]_{\mathrm{D}}^{20}+9.1$ (c 1.61, CHCl_{3}); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3553 \mathrm{~cm}^{-1}, 3063,2938,2838,1495,1466,1455 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.79\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.74(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 4.30(\mathrm{dd}, J=9.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.53(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.67$ and $4.76\left(\mathrm{AB}\right.$-signal, $\left.J_{\mathrm{A}, \mathrm{B}}=10.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.39-5.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}, J=\right.\right.$ $10.4 \mathrm{~Hz})$), $5.57(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 5.56-5.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}, J=17.3 \mathrm{~Hz}\right)\right.$), 6.16 (ddd, $\left.J=17.3 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$), $6.77\left(\mathrm{dd}, J_{\text {ortho }}=8.8 \mathrm{~Hz}\right.$, $\left.J_{\text {meta }}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 6.83\left(\mathrm{~d}, J_{\text {ortho }}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 7.14\left(\mathrm{~d}, J_{\text {meta }}=3.0 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, 6 \mathrm{6}-\mathrm{H}), 7.27-7.39(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.60\left(\mathrm{q}, \mathrm{C}-2^{\prime}\right)$, 55.53, $55.89\left(\mathrm{q}, 2 \times \mathrm{OCH}_{3}\right), 72.83\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 74.35(\mathrm{~d}, \mathrm{C}-5), 76.65\left(\mathrm{~s}, \mathrm{C}-1{ }^{\prime}\right), 81.80(\mathrm{~d}$, C-6), 83.14 (d, C-4), 99.11 (d, C-2), 111.89 (d, C-4"), 112.18 (d, C-3"), 113.22 (d, C-6"), 119.03 ($\mathrm{t}, \mathrm{CH}=\mathrm{CH}_{2}$), 125.67, 127.49, 127.52, 127.80, 128.21, 128.30 (d, 10 x C-Ar),
135.49 ($\mathrm{d}, \mathrm{CH}=\mathrm{CH}_{2}$), 135.78 ($\mathrm{s}, \mathrm{C}-1$ "), 137.57, 137.60 (s, $2 \times \mathrm{C}-\mathrm{Ar}$), 150.61, 153.46 (s , $\left.\mathrm{C}-2^{\prime \prime}, \mathrm{C}-5^{\prime \prime}\right) ; \mathrm{MS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right.$, pos.) $\mathrm{m} / \mathrm{z}(\%) 494(8)\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 477(62)\left[\mathrm{M}^{+}+\mathrm{H}\right], 373$ (100), 250 (10), 227 (90), 181 (10), 138 (8), 121 (28).

Data for (2R,4R,5R,6R)-5-Benzyloxy-4-[(1S)-1-hydroxy-1-(2,5-dimethoxy-phenyl)-ethyl]-2-phenyl-6-vinyl-[1,3]dioxane (13a). mp $122^{\circ} \mathrm{C}$ (diethyl ether); $[\alpha]_{\mathrm{D}}^{20}$ +27.8 (c 1.59, CHCl_{3}); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3553 \mathrm{~cm}^{-1}, 3034,2940,2909,2869,2838,1607$, 1588,$1493 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.72$ (s, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 3.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), $3.51(\mathrm{t}$, $J=9.1 \mathrm{~Hz}, 5-\mathrm{H}), 3.68$ and $4.24\left(\mathrm{AB}\right.$-signal, $\left.J_{\mathrm{A}, \mathrm{B}}=10.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.74,3.77(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.65(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 4-\mathrm{H}), 5.30(\mathrm{dt}, J=10.4 \mathrm{~Hz}$, $\left.J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right)\right), 5.51\left(\mathrm{dt}, J=17.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{H}_{\text {trans }}\right)\right), 5.74(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.04(\mathrm{ddd}, J=17.2 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.64(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.87-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20-7.21(\mathrm{~m}, 3 \mathrm{H}$, Ar-H), 7.38-7.41 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.53-7.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.72\left(\mathrm{q}, \mathrm{C}-2\right.$) $, 55.55,55.67\left(\mathrm{q}, 2 \times \mathrm{OCH}_{3}\right), 72.41\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 73.33(\mathrm{~d}, \mathrm{C}-5)$, 74.25 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 81.64 (d, C-6), 81.93 (d, C-4), 99.18 (d, C-2), $111.77,111.88$ (d, C-4", C$3^{\prime \prime}$), 112.97 (d, C-6"), 118.57 ($\mathrm{t}, \mathrm{CH}=\mathrm{CH}_{2}$), 125.92, 126.93, 127.20, 127.58, 128.00 , 128.60 (d, $10 \times \mathrm{C}-\mathrm{Ar}$), 133.63 ($\mathrm{s}, \mathrm{C}-1 \mathrm{l}$), 135.22 ($\mathrm{d}, \mathrm{CH}=\mathrm{CH}_{2}$), $137.78,137.98$ ($\mathrm{s}, 2 \times \mathrm{C}-$ $\mathrm{Ar}), 150.62,153.20\left(\mathrm{~s}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-5 "\right)$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 476$ (2.5) $\left[\mathrm{M}^{+}\right], 181$ (100) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}\right]$, 91 (39) $\left[\mathrm{PhCH}_{2}{ }^{+}\right]$.

Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{6}$ (476.57): C, 73.11; $\mathrm{H}, 6.72$. Found for 12a: $\mathrm{C}, 73.05$; H, 6.76. Found for 13a: C, 72.96; H, 6.75.

Crystal Structure Determination of $13 \mathrm{a}:{ }^{25} \mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{6}, \mathrm{M}_{\mathrm{r}}=476.6$, monoclinic, space group $P 2_{1}, a=9.335(5), b=16.095(8), c=9.572(4) \AA, \beta=115.35(2)^{\circ}, \mathrm{V}=$ 1299(1) $\AA^{3}, Z=2, D_{r}=1.218 \mathrm{~g} / \mathrm{cm}^{3}, F(000)=508, T=296(1) K$. Siemens R3m diffractometer, graphite monochromator, $\lambda(\mathrm{MoK} \alpha)=0.71073 \AA, \mu=0.08 \mathrm{~mm}^{-1}$, colorless crystal, size $0.35 \times 0.51 \times 0.56 \mathrm{~mm}, \omega-2 \Theta$ scan, 5064 intensities collected $4<$ $2 \theta<50^{\circ},-11<\mathrm{h}<11,-19<\mathrm{k}<19,-11<1<11,3$ standards every 400 reflections showed only random deviations, Lp correction, 4593 unique intensities ($\mathrm{R}_{\text {int }}=0.018$), 3800 with $\mathrm{F}>4 \sigma(\mathrm{~F})$. Structure solved by direct methods, ${ }^{26}$ full-matrix least-squares refinement based on F^{2} and 320 parameters, 27 all but H atoms refined anisotropically, H atoms refined with riding model on idealized positions, refinement converged at $\mathrm{R} 1(\mathrm{~F})=$ $0.036, \mathrm{wR} 2\left(\mathrm{~F}^{2}\right.$, all data $)=0.089, \mathrm{~S}=1.048, \max (\Delta / \sigma)<0.001, \mathrm{~min} / \mathrm{max}$ height in final ΔF map $-0.15 / 0.18 \mathrm{e} / \AA^{3}$. Figure 1 shows the molecular structure.

Reaction of metallated 2,5 -dimethylbenzene with the methyl ketone $\mathbf{1 0 c}$. ($2 R, 4 R, 5 R, 6 R$)-6-Ethenyl-5-hydroxy-4-[(1S)-hydroxy-1-(2,5-dimethoxyphenyl)-ethyl]-2-phenyl-[1,3]dioxane (13c). A solution of 2-bromo-1,4-dimethoxybenzene (325 $\mathrm{mg}, 1.50 \mathrm{mmol}$) in dry THF (5 mL) was lithiated as described above with $n-\mathrm{BuLi}(1 \mathrm{~mL}$, 1.5 M in n-hexane, 1 equiv). The suspension was then treated with a solution of ketone $10 \mathrm{c}(87 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dry THF (2 mL) and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 \min. Workup was performed as described above for 12a to yield the oily alcohol 13c (109 $\mathrm{mg}, 81 \%$); $[\alpha]_{\mathrm{D}}^{20}+35.1\left(c 0.11, \mathrm{CHCl}_{3}\right.$); IR (film) $3454 \mathrm{~cm}^{-1}, 3071,2937,2837,1495$, 1454; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.77\left(\mathrm{~s}, 3 \mathrm{H}, 2^{2}-\mathrm{H}\right), 3.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.77(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.81(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H), $4.14-4.17(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.35\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}\left(J_{\text {cis }}\right), 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH} \mathrm{C}_{2}\right.$ $\left.\left(\mathrm{H}_{\text {cis }}\right)\right), 5.53\left(\mathrm{~d}, J=17.3 \mathrm{~Hz}\left(J_{\text {trans }}\right), 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right)\right), 5.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.12$ (ddd, $J=16.9 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H=\mathrm{CH}_{2}$), 6.82 (dd, $J_{\text {ortho }}=8.9 \mathrm{~Hz}$, $\left.J_{\text {meta }}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.89\left(\mathrm{~d}, J_{\text {ortho }}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.08\left(\mathrm{~d}, J_{\text {meta }}=2.9 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, 6$ '- H) , $7.32-7.43(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.54\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $55.54,55.86\left(\mathrm{q}, 2 \times \mathrm{OCH}_{3}\right), 67.42$ (d, C-5), 77.13 (s), 80.79, 81.83 (d, C-4, C-6), 99.47 (d, C-2), 112.03, 112.94, 114.46, (d, $3 \times \mathrm{C}-\mathrm{Ar}), 117.50\left(\mathrm{t}, \mathrm{CH}=\mathrm{CH}_{2}\right), 125.76,127.86$ 128.45 (d, $5 \times \mathrm{C}-\mathrm{Ar}$), $132.67,137.61,150.32,153.58(\mathrm{~s}, 4 \times \mathrm{C}-\mathrm{Ar}), 134.73\left(\mathrm{~d}, \mathrm{CHCH}_{2}\right)$; $\mathrm{MS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right.$, pos.) m/z (\%) 387 (2) [$\left.\mathrm{M}^{+}+\mathrm{H}\right], 386$ (6) [$\left.\mathrm{M}^{+}\right], 369(5), 281$ (40), 263 (28), 181 (80), 143 (100).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$ (386.44): C, 68.39; H, 6.74. Found: C, 68.28; H, 6.79.
Reaction of the Silyl Ether 10d with 2-Lithio-1,4-dimethoxybenzene (11w). A solution of 2-bromo-1,4-dimethoxybenzene ($67 \mathrm{mg}, 0.31 \mathrm{mmol}$) in dry THF (2 mL) was lithiated in the usual manner by reaction at $-50^{\circ} \mathrm{C}$ with $n-\mathrm{BuLi}(0.2 \mathrm{~mL}, 1.5 \mathrm{M}$ in n hexane, 1 equiv) and reacted with silyl ether ($82 \mathrm{mg}, 0.26 \mathrm{mmol}$) in dry THF (1 mL) for 30 min at $-10^{\circ} \mathrm{C}$. Workup was performed as described for 12a and the crude product mixture in THF (2 mL) was then treated with a 1 m solution of tetrabutylammonium fluoride in THF ($0.4 \mathrm{~mL}, 0.4 \mathrm{mmol}$). After stirring for 1 h at $20^{\circ} \mathrm{C}$ the solvent was removed at reduced pressure and the residue separated by preparative TLC to afford the (R)-alcohol 12c ($55 \mathrm{mg}, 68 \%$) from the less polar and (S)-alcohol 13c ($19 \mathrm{mg}, 23 \%$) from the polar fraction (entry 14, Table 1).

Reaction of the Silyl Ether 10e with 2-Lithio-1,4-dimethoxybenzene (11w). A solution of 11 w [prepared from 2-bromo-1,4-dimethoxybenzene ($0.08 \mathrm{ml}, 0.54 \mathrm{mmol}$)
and $n-\operatorname{BuLi}(0.34 \mathrm{ml}, 1.5 \mathrm{M}$ in n-hexane, 0.54 mmol$)$] was reacted with the ketone 10 e as described above for the reaction of 10 d with 11 w . The isomeric mixture was then treated with tetrabutylammonium fluoride ($63 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (0.2 ml) to afford a mixture of $\mathbf{1 2 c}$ and $\mathbf{1 3 c}$ (52 mg , 2 steps 49%) in a ratio of 1:1.3 by GC (entry 15, Table 1).

1'-(R)- and 1 '-(S)-($2 R, 4 R, 5 R, 6 R)$-5-Benzyloxy-4-[(R)-hydroxy-2,5-dimethoxy-phenylmethyl]-2-phenyl-6-vinyl-[1,3]dioxane (14a). A suspension of Li ($224 \mathrm{mg}, 33$ $\mathrm{mmol}), \mathrm{MgCl}_{2}(1.570 \mathrm{~g}, 17 \mathrm{mmol})$ and naphthalene ($436 \mathrm{mg}, 34 \mathrm{mmol}$) in dry THF (15 mL) was stirred for 48 h at rt . The mixture was then treated successively with a solution of 2-bromo-1,4-dimethoxybenzene ($2.602 \mathrm{~g}, 12 \mathrm{mmol}$) in dry THF (15 mL) (30 min reflux) and the aldehyde $8 \mathbf{~ a ~ (~} 1.012 \mathrm{~g}, 3 \mathrm{mmol}$) in dry THF (10 mL) (2 h reflux). Workup was performed as described for 9 a to yield the isomeric mixture of $14 \mathrm{a}(1.262 \mathrm{~g}, 88 \%)$ as an oil. The ketone $8 \mathbf{8}$ can also be treated with $11 \mathbf{w}$ (91% yield of $\mathbf{1 4 a}$).
$1^{\prime}-(R)$ and $\quad 1^{\prime}-(S)-(2 R, 4 R, 5 R, 6 R)-4-[(S)$-hydroxy-(2,5-dimethoxyphenyl)-methyl]-5-(4-methoxybenzyloxy)-2-phenyl-6-vinyl-[1,3]dioxane (14b). The aldehyde $\mathbf{8 b}$ was reacted with 11w as described for 9 b to yield $\mathbf{1 4 b}(1.281 \mathrm{~g}, 86 \%)$ which was oxidized to the ketone $\mathbf{1 5 b}$ without purification.
($\mathbf{2 R}, \mathbf{4 R}, 5 R, 6 R$)-(5-Benzyloxy-2-phenyl-[1,3]dioxan-4-yl)-(2,5-dimethoxy-phenyl-6-vinyl)methanone (15a). The oxidation with PDC ($177 \mathrm{mg}, 0.47 \mathrm{mmol}$) and acetic anhydride ($201 \mathrm{mg}, 1.97 \mathrm{mmol}$) of $\mathbf{1 4 a}(315 \mathrm{mg}, 0.68 \mathrm{mmol})$ was performed as described for 10 a to yield 15 a ($269 \mathrm{mg}, 86 \%$) as an oil. Swern oxidation ${ }^{28}$ of $\mathbf{1 4 a}$ furnished 15a in 87% yield; $[\alpha]_{\mathrm{D}}^{20}+36.7\left(c 1.23, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2985 \mathrm{~cm}^{-1}, 2863$, $1756(\mathrm{C}=\mathrm{O}), 1650,1546,1440 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79,3.86(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x}$ OCH_{3}), $3.81-3.87(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.34(\mathrm{dd}, J=9.2 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.65$ and 4.79 (AB-signal, $\left.J_{\mathrm{A}, \mathrm{B}}=10.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.41(\mathrm{dt}$, $J=10.5 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}\right), 5.61(\mathrm{dt}, J=17.2 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right)$), $5.74(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.15(\mathrm{ddd}, J=17.2 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.92\left(\mathrm{~d}, J_{\text {ortho }}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.07\left(\mathrm{dd}, J_{\text {ortho }}=9.0 \mathrm{~Hz}, J_{\text {meta }}=\right.$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}$), $7.23-7.35$ (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.46-7.49$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=55.73,56.29\left(\mathrm{q}, 2 \times \mathrm{OCH}_{3}\right), 74.31(\mathrm{~d}, \mathrm{C}-5), 74.38\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 81.41$, 82.16 (d, C-4, C-6), 100.82 (d, C-2), 113.35, 114.45, 121.03 (d, C-3', C-4', C-6'), 118.70 (t, C-1), 126.85 (s, C-1'), 126.13, 127.73, 128.09, 128.12, 128.23, 128.84 (d, $10 \times \mathrm{C}-\mathrm{Ar}$), 134.96 (d, C-2), 137.31, 137.79,(s, $2 \times \mathrm{C}-\mathrm{Ar}$), 153.49, 153.61 (s, C-2', C-5'), 195.99 (s,
$\mathrm{C}=\mathrm{O}$); MS (EI) $m / z(\%) 460(1)\left[\mathrm{M}^{+}\right], 336(5), 266(12), 253$ (23), 213 (58), 181 (36), 143 (100), 121 (18), 91 (23).

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{6}$ (460.53): C, 73.04; H, 6.09. Found: C, 72.87 ; H, 6.14.
($2 R, 4 R, 5 R, 6 R$)-[5-(4-methoxybenzyloxy)-2-phenyl-6-vinyl-[1,3]dioxan-4-yl]-(2,5-dimethoxyphenyl)methanone (15b). The epimeric mixture of the alcohols $\mathbf{1 4 b}$ (247 $\mathrm{mg}, 0.50 \mathrm{mmol}$) was oxidized by PDC ($132 \mathrm{mg}, 0.35 \mathrm{mmol}$) and acetic anhydride (154 $\mathrm{mg}, 1.51 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ as described for $\mathbf{1 5 a}$ to afford the aryl ketone $\mathbf{1 5 b}$ ($214 \mathrm{mg}, 87 \%$) as an oil; $[\alpha]_{\mathrm{D}}^{20}+41.7\left(c 0.33, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3005 \mathrm{~cm}^{-1}, 2937$, 2880, 1684, 1610, 1496; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.81,3.82,3.88(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{x}$ $\left.\mathrm{OCH}_{3}\right), 3.88-3.93(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.33(\mathrm{dd}, J=9.1 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.59$ and $4.72\left(\mathrm{~A}, \mathrm{~B}\right.$-signal, $\left.J_{\mathrm{A}, \mathrm{B}}=9.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 5.23(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.42(\mathrm{~d}, J$ $\left.=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}\right)\right), 5.68\left(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right), 5.75(\mathrm{~s}, 1\right.$ $\mathrm{H}, 2-\mathrm{H}), 6.16\left(\mathrm{ddd}, J=17.0 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.85\left(\mathrm{~d}, J_{\text {ortho }}=\right.$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.95\left(\mathrm{~d}, J_{\text {ortho }}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.13\left(\mathrm{dd}, J_{\text {ortho }}=8.4 \mathrm{~Hz}, J_{\text {meta }}=\right.$ $\left.2.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29-7.60(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=55.69,56.24,56.81\left(\mathrm{q}, 3 \times \mathrm{OCH}_{3}\right), 74.51\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 74.58(\mathrm{~d}$, C-6), 81.94, 82.71 (d, C-4, C-5), 101.30 (d, C-2), 113.88, 114.14 (d, $3 \times \mathrm{C}-\mathrm{Ar}$), 117.19 (t , $\mathrm{CH}=\mathrm{CH}_{2}$), 126.33, 128.60, 129.31, 130.29, 132.76 (d, $9 \times \mathrm{C}-\mathrm{Ar}$), 127.46, 130.29 (s, $2 \times$ C-Ar), $135.54\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}_{2}\right), 137.86,153.96,154.10,159.75$ (s, $\left.4 \times \mathrm{C}-\mathrm{Ar}\right), 196.53$ (s, $\mathrm{C}=\mathrm{O}$); $\mathrm{MS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right.$, pos.) $m / z(\%) 504$ (2) $\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 455$ (2), 370 (4), 271 (32), 248 (21), 208 (100), 192 (42), 127 (14), 121 (10), 85 (24), 79 (12).

Anal. Caled for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{7}$ (490.55): C, 71.02; $\mathrm{H}, 6.12$. Found: $\mathrm{C}, 70.93 ; \mathrm{H}, 6.28$.
($\mathbf{2 R}, 4 R, 5 R, 6 R$)-(5-hydroxy-2-phenyl-6-vinyl-[1,3]dioxan-4-yl)-(2,5-dimethoxyphenyl)methanone (15c). The MPM ether $\mathbf{1 5 b}$ ($400 \mathrm{mg}, 0.82 \mathrm{mmol}$) was oxidized with DDQ ($225 \mathrm{mg}, 0.99 \mathrm{mmol}$) as described for $\mathbf{1 0 c}$ to yield the oily alcohol 15 c ($282 \mathrm{mg}, 93$ $\%$; $[\alpha]_{\mathrm{D}}^{20}+53.2\left(c 0.21, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3562 \mathrm{~cm}^{-1}, 2951,2839,1670,1496,1415$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.23(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.79,3.86(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 3.91(\mathrm{dt}, J=9.0 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.25(\mathrm{dd}, J=9.2 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 4.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.37\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {cis }}\right)\right.$), $5.56(\mathrm{dd}$, $\left.J=17.1 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH} \mathrm{H}_{2}\left(\mathrm{H}_{\text {trans }}\right)\right), 5.76(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.14$ (ddd, $J=17.1$ $\left.\mathrm{Hz}, J=10.6 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.92\left(\mathrm{~d}, J_{\text {ortho }}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.07(\mathrm{dd}$, $\left.J_{\text {ortho }}=9.0 \mathrm{~Hz}, J_{\text {meta }}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.17\left(\mathrm{~d}, J_{\text {meta }}=3.2 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.29-7.32(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=56.21,56.76(\mathrm{q}, 2$
x OCH_{3}), 68.29 (d, C-5), 80.95, (d, C-6), 83.90 (d, C-4), 101.39 (d, C-2), 113.36 (d, C3^{\prime}), 114.77 (d, C-6'), 118.47 (t, $\mathrm{CH}=\mathrm{CH}_{2}$), 121.30 (d, C-4'), 126.39, 128.56, 129.24 (d, 5 x C-Ar), 126.90 (s, C-1'), 134.91 (d, $\mathrm{CH}=\mathrm{CH}_{2}$), 137.81, (s, C-Ar), 153.73, 153.97, (s, C-2', C-5'), 191.253 (s, $\mathrm{C}=\mathrm{O}$); MS ($\mathrm{CI} / \mathrm{NH}_{3}$, pos.) m / z (\%) 388 (14) [$\left.\mathrm{M}^{+}+\mathrm{NH}_{4}\right], 371$ (8), 353 (16), 273 (32), 265 (100), 256 (8), 233 (12), 209 (10), 165 (10), 121 (22).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}$ (370.40): C, $68.11 ; \mathrm{H}, 5.95$. Found: C, $67.95 ; \mathrm{H}, 5.89$.
Reaction of Arylketone 15a with $\mathbf{M e C e C l}_{2}$ and MeI. A suspension of CeCl_{3} (666 mg , 2.70 mmol) in dry THF (10 mL) was treated at $-78^{\circ} \mathrm{C}$ with a solution of $\mathrm{MeLi}(1.6 \mathrm{~mL}$, $2.60 \mathrm{mmol}, 1.6 \mathrm{M}$ in diethyl ether). After stirring for 1 h the arylketone 15 a (571 mg , 1.24 mmol) in dry THF (5 mL) was added and the mixture was stirred for 2 h . The reaction was quenched by addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$, the organic phase was separated and the aqueous phases extracted with diethyl ether (3×10 $\mathrm{mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by filtration through a short column of silica gel (petroleum ether / 15% ethyl acetate) to yield the (S)-alcohol 13a ($560 \mathrm{mg}, 95 \%$) (see Table 2, entry 1). The arylketone $\mathbf{1 5 a}$ ($703 \mathrm{mg}, 1.5 \mathrm{mmol}$) was reacted in a similar way in dry diethyl ether (5 mL) with MeMgI prepared from Mg ($195 \mathrm{mg}, 8.0 \mathrm{mmol}$) and MeI ($228 \mathrm{mg}, 1.6 \mathrm{mmol}$) for 3 h at $-20^{\circ} \mathrm{C}$ to yield $\mathbf{1 3 a}$ ($671 \mathrm{mg}, 92 \%$) (see Table 2, entry 2).

Reaction of Arylketone $\mathbf{1 5 c}$ with MeMgI. A 3 M solution of MeMgI in diethyl ether ($0.25 \mathrm{~mL}, 0.68 \mathrm{mmol}$) was added dropwise at $-15^{\circ} \mathrm{C}$ to a solution of the arylketone 15c ($63 \mathrm{mg}, 0.17 \mathrm{mmol}$) in dry diethyl ether (2 mL) and stirred for 1 h . Workup proceeded as described above to yield after separation by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ the alcohols $\mathbf{1 2 c}(36 \mathrm{mg}, 54 \%)$ and $\mathbf{1 3 c}$ ($21 \mathrm{mg}, 32 \%$) (see Table 2, entry 3).
Data for $(2 R, 4 R, 5 R, 6 R)$-5-hydroxy-4-[(1R)-hydroxy-1-(2,5-dimethoxyphenyl)ethyl]-2-phenyl-6-vinyl-[1,3]dioxane (12c). $[\alpha]_{\mathrm{D}}^{20}+26.2\left(c 0.10, \mathrm{CHCl}_{3}\right.$); IR (film) $3451 \mathrm{~cm}^{-1}$, 2939, 2835, 1496, 1450; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65$ (s, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}$), $3.52(\mathrm{bs}, 1 \mathrm{H}$, OH), $3.61,3.79\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.66-3.72(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.94(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ H), $4.03(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.22\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{c i s}\right)\right.$), $5.34(\mathrm{bs}, 1$ H, OH), $5.40\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\left(\mathrm{H}_{\text {trans }}\right), 5.59(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 5.93\right.$ (ddd, $J=$ $\left.17.4 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.70\left(\mathrm{dd}, J_{\text {ortho }}=8.8 \mathrm{~Hz}, J_{\text {meta }}=2.7\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 6.80\left(\mathrm{~d}, J_{\text {ortho }}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 7.27-7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37-7.41$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=27.27$ ($\mathrm{q}, \mathrm{C}-2$) $, 55.42,56.21(\mathrm{q}, 2 \mathrm{x}$ OCH_{3}), 67.00 (d, C-5), 78.04 ($\mathrm{s}, \mathrm{C}-1$ '), $81.62,84.79$ (d, C-4, C-6), 100.25 (d, C-2),
112.80 (d, C-6"), 113.10, 113.67 (d, C-3", C-4"), 117.92 (t, $\mathrm{CH}=\mathrm{CH}_{2}$), 125.93, 127.94 , 128.59 (d, $5 \times \mathrm{C}-\mathrm{Ar}$), 132.23 ($\mathrm{s}, \mathrm{C}-1$ "), 134.66 (d, $\mathrm{CH}=\mathrm{CH}_{2}$), 137.61 ($\mathrm{s}, \mathrm{C}-\mathrm{Ar}$), 150.86, 153.53 (s, C-2", C-5"); MS (CI/ NH ${ }_{3}$, pos.) $m / z(\%) 387(14)\left[\mathrm{M}^{+}+\mathrm{H}\right], 386(2)\left[\mathrm{M}^{+}\right], 281$ (42), 263 (38), 181 (72), 143 (100).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$ (386.44): C, $68.39 ; \mathrm{H}, 6.74$. C, $68.31 ; \mathrm{H}, 6.82$.

REFERENCES AND NOTES

1. K. Krohn, V. S. Ekkundi, P. Jones and D. Döring, J. Carbohydr. Chem., preceding paper, Part 1.
2. G. N. Austin, P. D. Baird, G. W. J. Fleet, J. M. Peach, P. W. Smith and D. J. Watkin, Tetrahedron, 43, 7095 (1987).
3. J. S. Brimacombe and O. A. Ching, Carbohydr. Res., 8, 82 (1968).
4. W. W. Wood and G. M. Watson, J. Chem. Soc., Perkin Trans. 1, 1, 2681 (1987).
5. J. K. N. Jones and J. L. Thompson, Can. J. Chem., 35, 955 (1957).
6. D. J. Cram and H. P. Hopecky, J. Am. Chem. Soc., 81, 2748 (1959).
7. W. C. Still and J. H. McDonald III, Tetrahedron Lett., 21, 1031 (1980).
8. W. C. Still and J. A. Schnieder, Tetrahedron Lett., 21, 1035 (1980).
9. M. L. Wolfrom and S. Hanessian, J. Org. Chem., 27, 1800 (1962).
10. M. T. Reetz, Angew. Chem., Int. Ed. Eng., 23, 556 (1984).
11. D. J. Cram and F. A. Abd Elhafez, J. Am. Chem. Soc., 74, 5828 (1952).
12. M. Bupathy and T. Cohen, Tetrahedron Lett., 26, 2619 (1985).
13. R. Amouroux, S. Ejjiyar and M. Chastrette, Tetrahedron Lett., 27, 1035 (1986).
14. T. Imamoto, Organocerium Reagents in Comprehensive Organic Synthesis, (B. M. Trost and I. Fleming, Eds.) Vol 1; Pergamon Press, 1991, p 231.
15. T. Imamoto, Y. Sugivra and N. Tatuyama, Tetrahedron Lett., 25, 4233 (1984).
16. T. Imamoto, T. Kusumato, Y. Tawrayama, Y. Sugunasi, T. Mita, Y. Hatatanka and H. Yokoyama, J. Org. Chem., 49, 3904 (1984).
17. T. Imamoto, T. Kusomoto and M. Yokoyama, J. Chem. Soc., Chem. Commun., 1042 (1982).
18. E. A. Mesh, J. Org. Chem., 52, 4142 (1987).
19. E. J. Corey and D. C. Ha, Tetrahedron Lett., 29, 3171 (1988).
20. T. Sato, R. Kato and T. Fujisawa, Tetrahedron Lett., 29, 3955 (1988).
21. M. T. Reetz, M. Hüllmann and T. Seitz, Angew. Chem., 99, 478 (1987).
22. J. C. Fischer, D. Horton and W. Weckerle, Carbohydr. Res., 59, 459 (1977).
23. K. Krohn, U. Flörke, J. Kiene and I. Terstiege, J. Carbohydr. Chem., following paper.
24. K. Krohn, A. Michel, U. Flörke, H.-J. Aust, S. Draeger and B. Schulz, Liebigs Ann. Chem., 1093 (1994).
25. Further details of the crystal structure determination are available on request from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-406556.
26. G. M.Sheldrick, SHELXTL-Plus Structure Determination Software Programs, Siemens Analytical X-ray Instr. Inc., Madison, Wisconsin, USA, 1990.
27. G. M.Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, Universität Göttingen, Germany, 1993.
28. K. Omura and D. Swern, Tetrahedron, 24, 1651 (1978).
